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Abstract

In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from
real-world scenarios, artifact rejection is essential. However, currently there
exists no gold-standard. Although a plenitude of methodological approaches
implicitly assume the presence of latent processes in the signals, elaborate Blind-
Source-Separation methods have rarely been applied. A reason are challenging
characteristics such as Non-instantaneous and non-constant coupling, correlated
noise and statistical dependencies between signal components. We present a novel
suitable BSS framework that tackles these issues by incorporating A) Independent
Component Analysis methods that exploit both higher order statistics and sample
dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C)
Canonical-Correlation Analysis with temporal embedding. This enables analysis
of signal components and rejection of motion-induced physiological hemodynamic
artifacts that would otherwise be hard to identify. We implement a method
for Blind Source Separation and Accelerometer based Artifact Rejection and
Detection (BLISSA2RD). It allows the analysis of a novel n-back based cognitive
workload paradigm in freely moving subjects, that is also presented in this
manuscript. We evaluate on the corresponding data set and simulated ground
truth data, making use of metrics based on 1st and 2nd order statistics and
SNR and compare with three established methods: PCA, Spline and Wavelet-
based artifact removal. Across 17 subjects, the method is shown to reduce
movement induced artifacts by up to two orders of magnitude, improves the
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SNR of continuous hemodynamic signals in single channels by up to 10 dB, and
significantly outperforms conventional methods in the extraction of simulated
Hemodynamic Response Functions from strongly contaminated data. The
framework and methods presented can serve as an introduction to a new type of
multivariate methods for the analysis of fNIRS signals and as a blueprint for
artifact rejection in complex environments beyond the applied paradigm.

Keywords: fNIRS, Neuroimaging in Motion, Blind Source Separation, Entropy
Rate Bound Minimization, Multimodality, Machine Learning, Artifact Removal

1. Introduction

Functional Near-Infrared Spectroscopy (fNIRS) or -imaging (fNIRI) is an
optical neuroimaging technology that enables non-invasive local measurements
of hemodynamic changes, i.e., oxy- (HbO) and deoxyhemoglobin (HbR), in
cortical brain areas. Within the last decades, fNIRS has been established as5

a research tool in medicine and neuroscience [1, 2, 3, 4, 5, 6] and now enables
long-term non-invasive functional brain imaging at a good temporal resolution
and relatively low cost without any known hazard or risks. New fNIRS device
generations are now becoming more miniaturized and wearable, also providing
additional modalities like accelerometer or bioelectric signals [7, 8, 9, 10, 11], and10

expand the spectrum of fNIRS beyond static and toward ambulatory domains.
Important implications result for both medical/clinical and scientific fields, for
instance in the study of brain function and disorders [12, 13], emerging pervasive
healthcare and telemedicine [14, 15], neuroergonomics [16] and (hybrid) brain-
computer interfaces [17, 18, 19].15

The recovery of evoked brain activity from measured fNIRS signals is cru-
cial, as neural task-related responses are masked by various physiological and
non-physiological components which are often of equal or higher magnitude
(see [6, 20] and Figure 1). In fNIRS applications with moving subjects, this20

gains further importance, as changing environmental and behavioral conditions
add significant non-stationarities [21]. As the majority of studies until today
has been conducted with fiber-optical instruments in sitting subjects, many
methods in fNIRS literature provide a remedy only for one major subclass of
movement artifacts: Optical decoupling between optodes and scalp that leads25

to instantaneous virtual variations of chromophore concentrations in the form
of fast transient changes and sudden baseline shifts. We denote these as Direct
Movement Artifacts (DMA), see also fig. 1. With the rise of new lightweight
wearable equipment and ambulatory applications, a second class of artifacts
becomes increasingly important, but has only been tackled exceptionally so far:30

Motion-induced slow, non-instantaneous physiological processes (see also fig.
1, IMA) that modulate partial blood pressure, scalp and cerebral blood flow/
blood volume (CBF/CBV). We denote these as indirect movement artifacts
(IMA). Once data contamination is detected, trials are often entirely rejected
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[22]. However, when there are few trials or many movements, this is not an35

option.
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Figure 1: Left: Schematic exemplary decomposition of fNIRS signals into components using
all available channels in a data-driven BSS analysis. As a novel stand-alone approach or as a
supplementary preprocessing alternative to non-BSS approaches that aim to denoise data in
HRF-regression based GLM analysis. Illustration of the modulation of distinct components due
to different types of movement artifacts: (DMA) direct, due to optode shifts and decoupling,
(IMA) indirect, due to non-instantaneous motion induced physiological effects (focus of this
work). Right: Conventional approaches, which often manipulate signals individually in the
channel-domain, typically targeting only DMA.

There is currently no gold standard for the extraction of continuous evoked
hemodynamic brain signals or Hemodynamic Response Functions (HRF) from
masking noise components and movement artifacts. Univariate approaches
include moving standard deviation and spline interpolation [23], wavelet fil-40

tering [24], Kalman filtering [25], and correlation-based approaches [26]. A
promising class of multivariate methods makes use of complementary signals;
either by performing regression or adaptive filtering with accelerometer signals
[27, 28] or in multi-distance (MD) approaches using multiple source-detector
separations [29, 30, 31] for the rejection of superficial components, e.g., those45

originating from the scalp. Scholkmann et al. 2014 gave a broad overview of

3



univariate and multivariate methods for correction in fNIRS [6] and Brigadoi et
al. 2014 compared multiple univariate motion correction techniques [32]. The
majority of approaches implicitly assume the presence of latent physiological or
non-physiological artefactual components, but manipulate signals in the chan-50

nel domain. In contrast to other neuroimaging fields, elaborate Blind-Source
Separation (BSS) -based methods are yet comparatively underrepresented in
fNIRS, although they explicitly aim to identify latent processes. While Principal
Component Analysis (PCA) -based approaches have successfully been applied
to reduce superficial contributions from blood flow in static scenarios [33, 34],55

more complex methods such as Independent Component Analysis (ICA) have
mainly served as an alternative to averaging for the extraction of typical fast
or slow evoked responses from a high number of time-locked epochs [35, 36, 37]
or channels (e.g., 212 channels in a DOT system [38], 650 wavelengths in a
broadband fNIRS [39]). When applied to remove extracerebral signals [40],60

Virtanen concluded that (Fast)ICA typically performs worse than or equal to
PCA [41].

Weak ICA performance is due to a variety of fNIRS signal characteristics that
pose serious challenges to many standard BSS approaches, depending on their
limitations and the assumptions and statistics in the underlying model (see also65

simulations in 5.3). Among the challenges in the signals are non-instantaneous
and non-constant coupling, correlated noise [42] and source dependencies. For
a successful decomposition, it is crucial to select ICA algorithms that take the
right type of diversities into account. As a consequence, to the best of our
knowledge, there exists no elaborate BSS framework for the data-driven analysis70

and decomposition of single-trial fNIRS data so far. Ideally, such a framework
enables extraction and analysis of functionally distinct components without
affecting others — even when they share the same frequency band. Such a
framework could be a useful tool for preprocessing/ de-noising as well as for
the general analysis of fNIRS signals components: either in combination with75

or complementary to conventional General Linear Model (GLM) -based HRF
regression. Also, by taking advantage of complementary multimodal signals,
it could facilitate the identification of artefactual processes that are otherwise
hard to separate from the evoked hemodynamic responses, such as many indirect
movement artifacts. We present an approach toward such a framework by80

combining

• Independent Component Analysis (ICA) methods that exploit both higher
order statistics (HOS) and sample dependency by using mutual information
rate as a unifying framework for source decomposition [43, 44, 45],

• multimodality — here complementing fNIRS with accelerometer signals —85

assuming the presence of pairs of shared processes, and

• Canonical-Correlation Analysis (CCA) with temporal embedding to ro-
bustly extract the corresponding components.

As fNIRS in motion is a domain just emerging, there are currently no suitable
datasets available that provide both evoked neuronal hemodynamic responses90
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and well-controlled movement conditions, and certainly not multimodal data.
For the purpose, we present a novel, custom-tailored experimental cognitive
workload paradigm with freely moving subjects and use this unique data set for
quantitative and qualitative evaluation of the proposed framework.

95

Purpose of this manuscript is to provide a general BSS framework for the
data-driven analysis of fNIRS signals that can be used both supplementary to
and independently from conventional apporaches. We apply this B lind Source
Separation framework to Accelerometer based Artifact Rejection and Detection
(BLISSA2RD), tackling the challenge of indirect movement artifacts and point-100

ing out challenging signal characteristics and possible solutions on the way.
The manuscript is structured as follows: In the methods section, we iden-

tify and discuss fNIRS signal components and challenging signal characteristics
(subsections 2.1/2.2) and introduce the employed mathematical models (sub-
section 2.3). In 2.4 we propose a BSS-framework for fNIRS and its application105

in BLISSA2RD, tackling indirect movement artifacts. The new experimental
paradigm and data set used for evaluation are presented in 2.5, followed by
the applied evaluation metrics in 2.6. Section 3 then covers qualitative and
quantitative evaluation results, followed by a discussion and conclusion.

2. Methods110

2.1. fNIRS Signal Components

When performing BSS to extract underlying processes from fNIRS signals, a
classification of expected components can help with interpretation in the source
domain (see Figure 2). For those of physiological origin, we adopt a classification
scheme from Scholkmann et al. [6] and differentiate between six non-stationary115

physiological components C1− C6 by categorizing them into classes as

1. source (intracerebral vs. extracerebral),

2. stimulus/task relation (evoked vs. non-evoked) and

3. cause (neuronal vs. systemic).

From the perspective of artifact rejection, it makes sense to extend this120

classification to components of non-physiological origin NC1−NC3, typically
introduced in the acquisition processes: environmental influences, instrumenta-
tion noise (usually stationary) and changes in acquisition geometry (e.g., optical
decoupling, conventional movement artifacts).

Both types of components Cx and NCx originate from different domains,125

i.e., that of physiological chromophore concentrations and that of raw signal
intensities, respectively. Both are non-linearly linked to each other by the modi-
fied Beer-Lambert Law (mBLL) [46]. Variations in NCx lead to virtual changes
in the chromophore concentration domain. Commonly, careful instrumentation
design robustifies against NC1 − NC2. Low- or band-pass filtering of fNIRS130

signals with a typical cut-off frequency around 0.2Hz is common practice to
minimize non-evoked components C4− C6. Then, univariate and multivariate
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Figure 2: Components in measured fNIRS signals. Evoked and non-evoked functional signals
of interest (bottom) are often masked by physiological and non-physiological noise of equal or
higher magnitude. We perform BSS to improve signal to noise ratio. HR: Heart Rate, RESP:
Respiratory signals, MW: Mayer Waves, VLFO: Very Low Frequency Oscillations, CBF/CBV
Cerebral Blood Flow/Volume, PaCO2: Partial CO2 Pressure

methods [32, 6] are used to mitigate systemic cerebral & extracerebral compo-
nents (C2, C3, C5, C6) and direct movement artifacts due to optode shifts (NC3).

135

2.2. Challenging fNIRS Signal Characteristics

For (multimodal) BSS analysis, several challenging properties of fNIRS signals
have to be taken into account, some of which can be exemplified in the observation
of combined raw fNIRS intensity and accelerometer signals (see Figure 3):

• Single channels include both spatially specific and global unspecific com-140

ponents of neuronal or systemic, cerebral or extracerebral origin (C1-6).
These are subject to

• Non-instantaneous, non-constant and non-linear coupling of the under-
lying physiological processes. Global and local systemic signals are non-
simultaneously mixed into channels with spatially and behaviorally depen-145

dent delays and morphology as they non-instantaneously disperse along
the arteriole system and depend i.e. on relative orientation and movement
speed of the head and body (e.g., the pulse wave or blood-pooling effects).

• Correlated (pink) noise and sample dependency due to strong systemic
periodic physiological components in the fNIRS signal (C5 and C6, e.g.,150

the heart beat) [42] collide with the assumption of Gaussian (white) noise
and independent samples in the majority of applied models.

• Under-determined problem: Ideally, BSS approaches require an equal or
higher number of measured signals than latent factors. As in EEG, it is
often questionable whether this condition is fulfilled.155
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• Dependency between fNIRS sources: The assumption of independence in
ICA collides with the fact that several underlying physiological processes in
the fNIRS signals are not entirely separable and independent but form an
interacting network of interlinked statistically dependent processes [42, 6].

0 5 10 15 20 25 30 35
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1st PC /2nd/3rd PC
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Figure 3: Example of spatially dependent non-instantaneous and non-constant modulation
of raw fNIRS intensity signals (AF4/AF6) in motion and first three PCA components of
simultaneously acquired accelerometer on the head. Signals normalized and low-pass filtered
with fc = 0.5Hz. Peak-to-peak delays: Amin|max = 1050|1280ms, Bmin|max = 120|780ms.

Due to these properties, even the most elaborate BSS approaches might not160

achieve an ideal decomposition. From a Signal to Noise Ratio (SNR) perspective
this is, however, not required: Source separation into subsets of the same or
similar categories can already enable reliable artifact rejection and thus increase
the overall SNR. This is the approach of BLISSA2RD, which identifies and then
rejects subsets of movement-induced changes within the fNIRS signals, including165

but not limited to those due to blood-pooling.

2.3. Mathematical Models

The Generative Linear Model. A commonly used abstract mathematical model
for the generation of macroscopic neuroimaging data such as EEG, MEG, fMRI,
and fNIRS represents the measured data as a linear mixture of functionally170

distinct processes [47, 48]. These generative or forward models factorize observed
measurement data into latent factors (components) with a temporal signature
and their corresponding spatial activation patterns. Please be aware of the
difference between the following purely data-driven generative approach and
the conventional supervised General Linear Model (GLM) for HRF regression175

in fNIRS [49, 50, 51]. While the latter includes a-priori information such as
experimental stimulus time structure and (canonical) shapes of the HRF, we
work solely with the statistics of the data in a completely unsupervised manner.
In the following, we therefore use the term ”generative linear model” in the
context of Machine Learning driven linear mixing models, and ”General Linear180
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Tx/z Number of data points in modality x/z
Nx/z Number of channels in modality x/z
Λx Number of wavelengths per optode Cx in modality x
Kx/z Number of latent factors (sources / components)
xn/x(t) Tx/Nx-dimensional row/column vector of observed data in modality x, here NIRS
zn/z(t) Tz/Nz-dimensional row/column vector of observed data in modality z, here Accelerometer
X,Z Nx/z × Tx/z matrix containing the observed data in modality x/z
sx/z(t), ŝx/z(t) Kx/z-dimensional vector of (estimated) latent factors of modality x/z

Sx/z, Ŝx/z Kx/z × Tx/z matrix containing all (estimated) latent factors of modality x/z
Ax/z Nx/z ×Kx/z matrix of sensor-space patterns in forward models
W x/z Nx/z ×Kx/z matrix of filters in backward models

Table 1: Notation.

Model (GLM)” when referring to the commonly employed regression model that
is specific to the fNIRS/fMRI domain.

We will denote observed raw fNIRS data samples of time point t and channel
n with scalars xn(t) and accelerometer samples respectively with zn(t). As the
notation is congruent for both signals x and z, we will continue it exemplary on185

x only. We denote the observation matrix with data from all time points Tx and
recorded channels Nx asX ∈ <Nx×Tx , its row vectors as xn ∈ <Tx and its column
vectors as x(t) ∈ <Nx . In raw fNIRS intensity signals, Nx = Cx · Λx consists
of the number of optode pairs Cx and the number of recorded wavelengths Λx.
Usually, the two modalities differ both in the number of channels and sampling190

rate Nx 6= Nz and Tx 6= Tz. We assume the presence of Kx ≥ 1 latent factors
and denote these by sn ∈ <Tx and in analogy to above for all time points and
factors by Sx ∈ <Kx×Tx . Then, the noiseless linear forward model in a matrix
notation can be expressed by

X = AxSx (1)

and the corresponding discriminative or backward model by195

W xX = Ŝx. (2)

Here, Ax ∈ <Nx×Kx is the mapping matrix and W x ∈ <Nx×Kx is the
demixing matrix that extracts the estimated latent factors Ŝx. In general, the
linear forward model can additionally contain the noise term εx ∈ <Kx capturing
activity that is not explained by the Kx components. In our approach, we
consider the noiseless model for ICA. Here, the effect of noise can be mitigated200

through order selection in overdetermined cases [52, 53] or another stage of
decomposition (in our approach using CCA). Table 1 summarizes the notation
used in this manuscript. For more details on the interpretation of linear models
in multivariate neuroimaging, please refer to [48].

Since without additional constraints the factorization ofA and S is not unique,205

further assumptions about spatial and temporal dynamics are required for BSS.
These distinguish different approaches and their suitability for application to
fNIRS signals. A powerful way to obtain a unique decomposition under very
relaxed conditions is through the assumption of statistical independence of the
latent variables in the linear mixture, and when both sample dependence and210
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higher-order statistics are taken into account, ICA can even estimate multiple
Gaussian sources [43].

The mutual information framework for ICA. The goal of ICA is to find a
demixing matrix W that yields maximally independent source estimates Ŝ. For
the framework in this manuscript, we include the sample dependency of the215

sources in the ICA formulation. For this, a natural way to estimate W is by the
minimization of the mutual information rate which is given by [43]

Ir(W ) =

Nx∑
n=1

Hr(ŝn)− log | det(W )| −Hr(x), (3)

where Hr is the (differential) entropy rate. The cost function (3) takes both
higher order statistics (HOS) as well as sample dependency into account.

Among the widely used ICA algorithms, Infomax [54], uses a fixed nonlinearity220

model for the underlying distribution of the sources. ICA-EBM [55] provides
flexible density matching through the use of four measuring functions based
on the maximum entropy principle and has been shown to maximize statistical
independence efficiently. Most ICA algorithms take advantage of only higher-
order statistics by ignoring sample dependence that exists in many signals — and225

certainly in fNIRS as well — by assuming independent and identically distributed
samples. ICA-ERBM [44] builds on the flexible density model of ICA-EBM
and adds the use of sample dependence in addition to HOS to achieve ICA. By
calculating the entropy rate of the sources in ICA-ERBM, and therefore taking
advantage of multiple statistical properties, we expect to achieve a superior230

estimation of underlying sources in the presence of source dependence. We
provide a brief overview on ICA-ERBM in the supplementary material 5.1.

Canonical Correlation Analysis and temporal embedding. A method for finding
co-modulating components in multivariate data is Canonical Correlation Analysis
(CCA) [56], see [57] for a review. It estimates normalized linear filters wx ∈ <Nx

235

and wz ∈ <Nz , the canonical variates, that maximize the canonical correlation
between the projections of each modality:

max
wx,wz

Corr
(
wT
xx(t),wT

z z(t)
)
. (4)

If the two modalities do not correlate instantaneously, optimal filters depend
on an — usually unknown — time lag τ . One solution is to temporally embed
one modality with a given set of D time lags {τ0, ..., τD}, thus optimizing time-240

lag-dependent projections

max
wx,wz(τ)

Corr

(
D∑
i

wT
xx(t),wz(τi)

Tz(t− τi)

)
. (5)

This method has been applied to medical imaging in various forms, for
instance with kernel CCA for multimodal fMRI analysis [58], or without temporal
embedding in fNIRS [59].
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2.4. Time Embedded Multimodal BSS Approaches for fNIRS245

In our approach, we tackle the challenge of fNIRS signal decomposition by
exploiting the combined strengths of the aforementioned linear methods. In a
first step, we decompose the fNIRS signals into mutually independent sources
with ICA-ERBM, taking sample dependency and HOS into account. Performing
further analysis and processing steps in the source space then allows to increase250

the distance between components of interest and components for manipulation
and rejection. Employing CCA, we exploit target signals from an additional
modality, allowing the identification and extraction of co-modulating components.
To take care of non-instantaneous coupling dynamics, the complementary target
signal is temporally embedded.255

In the context of direct and indirect movement artifact rejection, the application
of accelerometer signals as targets is a natural choice. In the following, we
describe BLISSA2RD, one possible implementation for the rejection of (indirect)
movement artifacts based on the proposed framework.

BLISSA2RD: Blind Source Separation and Accelerometer based Ar-260

tifact Rejection and Detection. To increase the SNR of cerebral neuronal
components of interest in the fNIRS signals, we make use of the backward ICA-
ERBM model in conjunction with multimodality and CCA by assuming that
fNIRS and accelerometer data sets are related by pairs of shared processes whose
components BLISSA2RD aims to extract and reject.265

Figure 4 gives an overview of the method, Figure 10 in subsection 3.0.1
complements this description with typical signals observed in the different stages
of BLISSA2RD.

In a preprocessing step, both the fNIRS data X and accelerometer data270

Z are channel-wise normalized to zero mean and unit variance, then linearly
detrended and low-pass filtered with a cut-off frequency of fc = 0.5Hz. We use
a comparably high cutoff frequency at this stage for better separability in the
following process and apply conventional processing steps, including a low-pass
with a lower cutoff after cleaning. The accelerometer signals, usually acquired275

at sample rates higher than fNIRS (here 50Hz), are then sub-sampled to a
common time base using linear interpolation and a polyphase anti-aliasing filter.
In the fNIRS domain, we pool all wavelengths in X and perform ICA unmixing
of the raw fNIRS intensity signals with ICA-ERBM (Figure 10 I). For this, a
hyperparameter, the filter length pfl has to be selected. Its value determines280

the number of samples included in the whitening process of ERBM [44]. We do
not elaborate its selection further in this manuscript but provide a brief note in
the supplementary material 5.2.
On the accelerometer data, Principal Component Analysis (PCA) is performed
for dimensionality reduction to Kz = 3 pairwise orthogonal Euclidean dimensions285

by selecting the three components with highest eigenvalues. This step is redun-
dant when only one 3D accelerometer on the head was used for the acquisition of
movements. By appending D time-shifted copies of the original (PCA reduced)
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data Sz(τd), the three main movement components are then temporally embed-
ded into a higher dimensional space (Figure 10 II) to take non-instantaneous290

coupling into account: S̃τ,z =
[
Sτ0 ,Sτ1 , ...,SτD

]> ∈ <DKz×Tz .
For the time shifts τd = d ·∆t, d ∈ {0, 1, ..., D} the number of copies D

and step width ∆t have to be set. The selection of these parameters impacts
the effectivity of the method concerning the coupling between movement (ac-
celerometer signals) and fNIRS components. We can include apriori knowledge295

of the physiological signal for this purpose: A) Causality. Movement induced
artefactual fNIRS components cannot precede the accelerometer signals: time-
embedding only in positive directions. B)The fNIRS frequency band of interest
limits the size and number of time shifts that are reasonable.

Using the time-embedded main movement components S̃τ,z and the factor-300

ized independent fNIRS components Ŝx, we now perform Canonical Correlation
Analysis (Figure 10 III), finding projections Ux and V z of both modalities that
correlate maximally. On the fNIRS side, we assume n projections ux,n ∈ <Tx

that exceed a canonical correlation threshold to be artefactual components
caused by movements. Applying Theorem 1 in [48], these are then projected305

back by the means of

ACCA
x = Cov(Ŝx)WCCA

x Cov(Ux)−1 (6)

and subtracted from the independent fNIRS sources (Figure 10 IV). Finally,
back-projection of the cleaned fNIRS sources into the original intensity domain
and reversing the normalization yields the raw fNIRS signals that are now cleaned
from (time-delayed) processes that correlate with movement (Figure 10 V).310

2.5. Dataset: A New Experimental Paradigm

While a variety of new fNIRS application scenarios in more natural lifelike
environments is on the horizon, there is still a lack of instruments, experiments
and data sets [60, 61] that allow the development and evaluation of methods
in that domain. To alleviate this, we designed and performed an experiment315

for the multimodal acquisition of neurophysiological data to infer short time
memory-based cognitive workload from freely moving participants performing
modified spatial n-back tasks. The paradigm aims to constrain the participants
only minimally while at the same time enabling a high control of experimental
conditions under quasi-realistic circumstances.320

For the miniaturized and wireless synchronous acquisition of fNIRS, EEG,
3D-accelerometer and other physiological signals, we made use of two of our
recently developed hybrid M3BA modules [10] in a wearable ultra lightweight
fiberless headset (< 150 g, see Figure 6). By the means of this novel fiberless
instrumentation approach we achieved highly stable optical coupling between325

frontal optodes and the scalp, preventing optode shifts and resulting direct
movement artifacts to the greatest extent in this study.

A Spatial color n-back paradigm in freely moving subjects. The overall
set-up and basic protocol are depicted in Figure 5 to eludicate the explanation
of the following experiment.330
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Figure 4: BLISSA3RD Method Overview. I) ICA decomposition step, II) temporal embed-
ding of principal accelerometer components, III) identifying shared processes with CCA, IV)
estimating artefactual components in the ERBM source space, V) cleaned signal.

A freely moving subject stands in front of a wall with 8 tiles equidistantly
placed every 45◦ on a circle with an individually adjusted radius R. It is defined
by the subject’s height h with R = 0.45× h, which also approximates half of the
span of outspread human arms. The center is located at the participant’s solar
plexus. Here, a screen shows instructions and visual cues.335

The tiles are sized 10 × 10 cm2 and are illuminated in 8 different RGB states
(red, magenta, blue, light blue, green, yellow, white, OFF). Pressing a tile
activates a push button. In each of the 12 experimental blocks with a respective
duration of 10min, the participant performs a sequence of 7 rounds based on
a modified spatial n-back task, alternating n = 0 with a pseudo-randomized340

order of n = 1, 2, 3. Each block starts with a resting period of 30 s. At the
beginning of each round, an instruction cue is shown on the screen for 6 s. In
this time, a pseudo-randomized target color (all RGB states except OFF ), the
constant default color OFF and the n-back instructions are displayed. 0-back
rounds consist of 6 trials; 1,2,3-back rounds consist of 18 trials, each with345

constant duration of 6 s. At the beginning of each trial, the color configuration is
instantaneously and pseudo-randomly reconfigured; each tile has a unique color.
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Figure 5: Spatial n-back based cognitive workload paradigm with freely moving subjects.
A,B,C: placeholders for pseudo-randomized sequence of 1,2,3-back task. Small colored squares
next to tiles mark example configuration, roman letters mark number of the first four trials
within an example round. ”Target Position” given in the table marks the correctly selected
position in each exemplary n-back task.

The participant has to decide for, and press one of the eight tiles within each
trial and selection speed is not rewarded. For motivation, correct selections add
points to a block-wise score, erroneous/ or no selections within the trial period350

lead to a small penalty. The target color and n-back level define the task to
solve in each trial to follow in the same round. See also Figure 5 for examples:

• In 0-back, the target and default colors are both OFF . In each trial, the
subject finds and selects the only tile that is not illuminated. There are
n = 0 positions to memorize. This serves as a baseline task.355

• In n = 1, 2, 3 − back, a tile is to be selected whenever the target color
reappears in n + 1 subsequent trials on the same spatial location. If this
condition is not met within a trial, the tile with the default color OFF has
to be pressed. In each trial, the participant has to remember and mentally
update the target color position of n = 1, 2, 3 preceding trials.360

Only 25 % of n = 1, 2, 3− back trials and all 0-back trials within each round
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fulfill the target condition. Speakers provide simple auditory cues for rewards,
penalties and the begin and end of each trial. Participants were instructed to
use only their dominant hand for all button presses. After each block, there
was a 3min pause, after every 4th block a break of arbitrary individually chosen365

length.
The experiment was performed with 17+11 participants (16 female, 27 right-
handed), with age 28.1± 5.8 y and height 172± 9.4 cm (mean±std). 11 partici-
pants took part in a preliminary study with a slightly different protocol (less
but longer blocks) but same paradigm and randomization. The experiment370

was conducted in accordance with the declaration of Helsinki and approved
by the Ethics Committee of Berlin Institute of Technology (approval number:
LUE 01 20161117). All participants had normal or corrected to normal vision,
and none of the participants reported color-blindness or neurological, psychi-
atric, or other brain-related diseases. All participants were informed about the375

experimental procedure, anonymized data evaluation, and distribution, and gave
written consent prior to the experiment.
The fNIRS optodes used in this study were placed on the forehead with a
source-detector separation (SDS) of 30mm and with the frontmost optode pair
registered to the EEG 10-20 positions Fp1/Fp2, resulting in 9 channels over380

left and right superior-, medial- and medial-orbital -frontal regions, see Figure
6. Signals were sampled at a rate of 8.33Hz. X,Y,Z- accelerometer data was
acquired at 50Hz by both M3BA modules, which were rigidly incorporated into
the headset between the pre-auricular and parietal points P7/8 respectively.

2

1

3

4

9

56

7
8 Fp2 Fp1

Figure 6: (left) hybrid EEG-fNIRS headset. (right) fNIRS channel placement and sensitivity
map. Red: emitters, blue: detectors, black: measurement channels. Visualization with Homer2
Atlas Viewer [62]

While the task difficulty is modulated by the number of positions that have385

to be memorized and mentally updated in each trial, all other experimental
conditions remain constant regardless of the task and individual performance.
This includes trial duration, color and spatial randomization and one performed
selection in each trial. Individualized tile distances lead to equal movement
conditions and well defined terminating postures across all participants and390

enforce stepping forward/backward for full vision and access to the field. While
the trial length of 6 s leads to a shared frequency band between artifacts and
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hemodynamic responses, the overall block-lengths also enable analysis of slower
fNIRS signal changes.

2.6. Evaluation Metrics395

A general challenge in the evaluation of motion artifact rejection techniques
in fNIRS signals is that the ground truth is lacking, as the true hemodynamic
response is unknown (see also [32]). Here, we present the methods and metrics
employed for quantitative evaluation based on statistical signal properties, target
signals from multimodality, physiological plausibility, simulations and comparison400

of performance with established methods. We evaluate on the 17 × 120min
dataset from the experimental main study. As common preprocessing step,
we linearly detrend channels to remove slow drifts and then apply a 4th order
zero-phase Butterworth low-pass filter with fc1 = 0.5Hz. This first filter stage
improves BSS performance as it limits the decomposition to components in405

the bandwidth of interest. BLISSA2RD artifact rejection is always performed
block-wise. Signal bandwidth is further reduced (fc2 ∈ {0.2, 0.033Hz}) as a last
common step. Statistical tests employed for significance are paired t-tests.

2.6.1. Assessment: Blind Source Separation of fNIRS Signals

Qualitative Investigation. The practical success of unmixing real-world fNIRS410

signals with BSS methods depends on the quality of decomposition achieved by
the applied ICA approach. We focus here on the comparison of ICA-ERBM and
popular FastICA [63]. Decomposition quality was assessed visually with respect
to separability of components, using apriori knowledge about

(1) causal dependencies between time logged events, movement artifacts, and415

complementary accelerometer signals and
(2) morphology, smoothness and discriminability of commonly known physio-

logical components in fNIRS such as the pulse wave or LFOs (see Section 2.1).
ICA enables unique identification of the underlying sources under very general
conditions [43, 64] Estimated sources of different ICA algorithms from the same420

data are ambiguous with respect to permutation and scaling [64, 65]. Align-
ment of sources was performed using Bertsekas auction algorithm [66, 67, 68]
(one-sided, fixed epsilon) in the normalized FFT domain.

Simulated Data and Decomposition Metrics. In a simplified approach,
we simulate fNIRS source characteristics to quantify some of the concerns raised425

in section 2.2 and to complement the qualitative inspection. 7 processes are gen-
erated for t ∈ 0...100 s, sampled at fs = 8Hz (see Figure 15 and Supplementary
Material 5.3), representing S1) Breathing, S2) Heart rate, S3) Mayer waves, S4)
Evoked responses, S5) White random gaussian noise, S6) Movement artifacts
and S7) Dependent evoked processes.430

Two pairs of sources are statistically dependent: S1 and S2 are weakly
correlated (< 0.1) and S4 and S7 are moderately correlated (µ±σ = 0.39± 0.23,
see also Figure 9 B. While sources S1 − S4 remain constant, S5 − S7 are newly
generated in each iteration. Observations are generated with a constant, arbitrary435
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mixing matrix A and subsequent unmixing is performed with ERBM and
fastICA. As before, estimated sources from each method are aligned to their
corresponding ground truths using Bertsekas auction algorithm in the normalized
FFT domain. To quantify unmixing performance, two metrics are investigated:
Intersymbol interference (ISI) as a global metric, and the correlation between440

aligned estimated and true sources: Corr(Ŝi, Si) | i ∈ {4, 7}. ISI is a performance
index, also known as Amari Index, measuring the quality of separation for BSS
algorithms and is invariant to source scaling and permutation [69, 70, 71].
Simulations are repeated N = 1000 times. To better differentiate the ISI results,
convergence / stability of the unmixing performance is assessed as follows: Let445

G = WA with W the estimated demixing matrix and A the true mixing matrix.
The unmixing is considered stable, if the locations of the largest squared elements
in any two rows of G are different.

2.6.2. BLISSA2RD Performance: Extraction of Artifacts

Although the ground truth is unknown, essential features of task-related hemo-450

dynamic responses are by now well understood and typically stable. Commonly,
averages are calculated, and the variability between single trials is assumed to be
caused by the non-evoked processes of both systemic origin and motion artifacts.
Ideally, the evoked neuronal response in a single subject should be stationary
across rounds of the same cognitive task. In contrast, when averaging across455

many trials with constant movement conditions (here selected tile position), the
induced hemodynamic motion artifacts should be stationary to a high degree.
Under this assumption, we use 1st and 2nd order statistics for investigation of
average artifacts and SNR:

Average Artifacts in the Chromophore Domain. Over the course of the460

whole experiment, each participant performed approximately 930 time-logged,
randomly distributed button presses. We determine the average induced hemo-
dynamic artifacts from 113 signals each, for all end-positions and all channels,
both within and across subjects: fNIRS signals are segmented into epochs of
±3 s around each button-press event; we then calculate averaged hemodynamic465

artifacts for HbO/HbR in each movement condition, channel, and subject, a
total of 2× 8× 9× 17 = 2448. We do this for both the original data and the data
cleaned with BLISSA2RD. As the average artifact-free signal is expected to be
constant and close to zero, we make use of the peak to peak amplitude App and
the standard deviation of the average signal across time σ̄ = std(µ(t)) in each470

channel to quantify average artifacts in each position before and after cleaning.

Within-Subject Standard Deviation / SNR of Slow Task-Related Hemo-
dynamic Signals. The majority of conventional fNIRS studies aim to extract
task-related hemodynamic response functions (HRFs) using an fMRI inspired
supervised (canonical) GLM regression approach and often block averaging. This475

analysis typically requires a study design with repetitive and known stimuli in the
order of 10 s. In contrast, the paradigm in this study aims to evoke signals suit-
able for unsupervised long-term monitoring and discriminating working memory
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load under realistic circumstances: While single trials within each block are 6 s
long and provide a stimulus each, the mental tasks and induced responses depend480

on the continuous effort across trials within 90 s rounds. Consequently, we focus
on slow (long term) fNIRS signal trends in the following. For each subject and
experimental n-back condition (n ∈ {1, 2, 3}), the signals are segmented into
Pn = 12 epochs using the first 90 s of each round. The same metric σ̄ denoted
“within-subject standard deviation” in [32] is being used as a measure of noise485

in the evoked physiological HbO / HbR signals: σ̄ is the mean between-epoch
variability of hemodynamic responses: The standard deviation across epochs Pn

of the mean across time of the same condition n. It is assumed as an approxi-
mation that the stationarity of the evoked physiological hemodynamic response
µhrf prevails, while the variability between single epochs of the same condition490

σ̄ is predominantly due to motion artifacts. We then quantify the channel-wise
improvement of SNR achieved by our cleaning approach by

∆SNR = SNRclean − SNRorig

= 10 log10

(
µhrf
σ̄clean

)
− 10 log10

(
µhrf
σ̄orig

)
= 10 log10

(
σ̄orig
σ̄clean

)
(7)

Noise and SNR improvement are determined in 17×3×9×2 (subj× conditions×
ch × HbO/HbR) = 918 average slow prefrontal oxigenation signals, each from
12 experimental runs in the same n-back condition over the course of 90 s.495

2.6.3. Comparison of BLISSARD Performance: Recovery of Simu-
lated HRFs

In the following, we present the methods applied for a comparison between
BLISSA2RD and three established algorithms for movement artifact removal.
This enables a comparative assessment of its performance in conventional ex-500

traction of HRFs, as performed in [32].

Simulated HRF on Real-World Data and Metrics for Quality Assess-
ment. The real-life oriented spatial cognitive workload paradigm in this study
provides comparatively long task periods and hemodynamic trends, and no
ground truth. A straight-forward conventional approach is therefore not feasible.505

Instead, as a remedy, we simulate known ground truth HRF onto the real fNIRS
data from 1-back tasks. These provide realistic movement artifacts and physio-
logical signals, while the continous hemodynamic trend due to the ongoing low
mental effort is still rather weak. We split each 90 s long 1-back round after the
instruction period into three non-overlapping 30 s windows. We then augment510

the raw intensity signals of a subset of 4 out of 9 channels within each window
with a known prototypical HRF (total length 18 s, see 13, black signal), starting
at a normally distributed random offset between 0 − 10 s. This yields 36 HRFs
in each augmented channel and participant, a total of 2448.

Finally, the known ground truth HRFs and the augmented data are used for515

performance evaluation on the basis of two performance metrics: (1) the Pearson
correlation (PCorr) and (2) the Root Mean Square Error (RMSE) between the
ground truth and extracted HRF after artifact rejection.
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Analysis Pipeline for Comparison with PCA, Spline and Wavelet Ap-
proach. For a better overall comparability, we follow the same processing520

pipeline and parameter selection given in [32], using HOMER2 toolbox functions
[62] for all processing steps and conventional artifact removal. With the above
performance metrics, we compare BLISSA2RD with established PCA, Spline
and Wavelet approaches. The processing and used parameters are follows:

1. Conversion from raw intensity data to changes in optical density (OD)525

2. Removal of noisy channels
3. Motion artifact detection for PCA, Spline and Wavelet method

[tMotion = 1.0, tMask = 1.0, AMPthresh = 0.4, STDEV thresh = 10]
4. Motion artifact correction [ I) PCA (nSV = 90), II) Spline (p = 0.99), III)

Wavelet (iqr = 1.5, db5-wavelet), IV) BLISSA2RD (p = 15, ∆t = 0.36 s,530

D = 5, corr thresh = 0.4), IV) no correction]
5. Bandpass filtering [0.01− 0.5Hz]
6. Conversion of OD to HbO / HbR concentrations using the mBLL
7. Subject wise block averaging (baHRFs) across all 36 trials of a channel.
8. Calculation of PCorr and RMSE between ground truth and baHRFs535

In case of BLISSA2RD, we apply the same pipeline except that 5) and 1) are
mutually exchanged: The method works best on intensity data, and source
decomposition is improved when limited to the signal bandwidth of interest.

3. Results

3.0.1. Blind Source Separation of fNIRS Signals540

Qualitative Investigation: ICA of fNIRS Real-World Signals. Figure
7 depicts a typical subset of aligned sources that were decomposed with ERBM
ICA and fastICA from the same unfiltered raw intensity real-world fNIRS data.
In the visual inspection, ERBM ICA consistently outperformed other tested ICA
methods, yielding a higher number of unique and physiologically plausible and545

identifiable sources, e.g. from LFOs, pulse waves and movement artifacts, as
well as generally smoother and less noisy shapes.

Performance Analysis: ICA of Simulated fNIRS Signals. The visual
inspection is quantitatively complemented by the simulation results. Figure 8
shows a typical example of simulated fNIRS after decomposition by ERBM ICA550

and fastICA. More details are provided in supplementary material 5.3.
ERBM ICA unmixing yielded 59 and fastICA yielded 290 unstable results

out of 1000, where in 87 out of 290 cases fastICA did not converge to the correct
number of 7 target sources. Figure 9 A shows the correlation and ISI perfor-
mance measures over all iterations of the decomposition performance analysis.555

In the following, we focus on the dependent target sources S4 and S7, as these
represent the evoked responses.

For target source S4, ERBM ICA yielded estimates that correlate with the
true signal on average (µ± σ) with 0.97± 0.04, fastICA yielded 0.93± 0.10. For560
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resulting from ERBM ICA (mid) and fastICA (right). ERBM ICA results in smoother and
more distinguishable components from movement artifacts (1,2,7,9) pulse wave (11) and Mayer
waves (12). Grey dotted lines indicate button-press events in the experiment, grey numbers
the corresponding position, resulting in DMA (see also Figures 5 and 11 for reference).
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Figure 8: Typical example of simulated fNIRS data unmixed with ERBM-ICA and fastICA.
Sources representing breathing (S1), heart rate (S2), Mayer waves (S3), evoked responses (S4),
white noise (S5), movement artifacts (S6) and dependent evoked processes (S7). Bold numbers:
correlation between ground truth and estimated sources.

the dependent target source S7, ERBM ICA yielded estimates that correlate
with 0.92± 0.17, where fastICA yielded corresponding estimates with 0.72± 0.19.
Across all other sources, the correlation is on average 0.98± 0.01 and 0.96± 0.03
for ERBM ICA and fastICA respectively. ISI analysis (Figure 9 C) yielded an
average (µ± σ) ISI of 0.042± 0.012 in ERBM ICA and 0.095± 0.033 in fastICA565

for all decompositions. When only investigating unstable decompositions, ISI
was found to be 0.045± 0.014 and 0.120± 0.033 respectively.

Exploiting Multimodality: Decomposition of fNIRS with BLISSA2RD.
Following the formal description of each step in the multimodal BLISSA2RD ap-570

proach in Figure 4, Figure 10 exemplifies typical signals observed in the different
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domains of the method.
It illustrates amongst others that

• ERBM ICA components are modulated by movements to different degrees
- displayed before and after CCA artifact rejection step (10 I+IV).575

• Temporal embedding of a principal accelerometer component (τD with
D ∈ {0, ..., 5}) helps to alleviate non-instantaneous coupling (10 II).

• CCA extracts shared processes from the ERBM ICA sources and tempo-
rally embedded principal accelerometer components with high canonical
correlation (10 III, see also supplementary material 5.4).580

• Signals before vs. after cleaning differ significantly in both the intensity
and chromophore domain (10 V).

A quantitative investigation of co-modulation coefficients from cross-correlation
analysis and BLISSA2RD CCA between accelerometer target signals and fNIRS
signals is provided within the supplementary material 5.4. The choice and impact585

of the time embedding parameter τ is also discussed. On average, the first three
extracted artifact components show a strong to moderate canonical correlation
of 0.85± 0.06, 0.71± 0.05 and 0.60± 0.05 for τ ≥ 1.2 s. For a suggested CCA
threshold of 0.4, BLISSA2RD finds and removes on average 4 movement artifact
components from the fNIRS time series data.590

3.0.2. BLISSA2RD Performance: Extraction of Artifacts

Average Artifacts in the Chromophore Domain. Figure 11 A depicts
the grand average hemodynamic artifacts in three exemplary channels AF3,
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Fpz and AF4 for all positions of the experiment and both the original and
cleaned data. Average movement artifacts were each calculated from a total595

number of 1920 epochs across all subjects. In the unprocessed data, significant
artifacts can be observed for all positions and channels (min. 0.2µMolpp in HbO).
Events where the participants stooped down (pos. 4-6) go along with largest
changes (up to 3µMolpp in HbO, up to 0.8µMolpp in HbR in Fpz). Artifact
morphologies differ between movement conditions but also between channels600

and often show an undershoot followed by a more substantial overshoot in HbO,
where HbR can display a similar or inverse behavior. In positions above shoulder
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Figure 11: Grand average hemodynamic artifacts and statistics. (A) Average signals for each
button position in original data and data processed with BLISSA2RD of selected channels
AF3, Fpz, AF4. Scatter plots of peak to peak amplitudes App (B) and standard deviations σµ

(C) of the average movement artifacts in each channel for each subject and position. subscript
”o” (y-axis): original data, subscript ”c” (x-axis): cleaned data. HbO: red, HbR: blue.

height (1,2,8), HbO typically displays only undershoots. In contrast, the data
cleaned with BLISSA2RD, shows remaining average hemodynamic artifacts of
max. 0.08µMolpp in HbO and < 0.01µMolpp in HbR across all channels and605

positions, an attenuation of up to two orders of magnitude.
Scatter-plots in Figure 11 B & C depict the peak to peak amplitudes Appr /

Appc and standard deviations σµr / σµc of the average hemodynamic artifact in
single subjects, channels and movement positions for original (o) vs. cleaned
(c) data. Across all subjects, channels and movement positions, application of610

BLISSA2RD reduces App and σ̄ of averaged hemodynamic artifacts in HbO and
HbR on average by more than one order of magnitude and up to two orders of
magnitude in subsets.

Within-Subject Standard Deviation / SNR of Slow Task-Related Hemo-
dynamic Signals. Analysis of the within-subject standard deviation σ̄ and615

SNR of original and processed physiological HbO / HbR signals during n = 1, 2, 3-
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back tasks yielded the results summarized in Figure 12 and Table 2.
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Figure 12: A: Within-subject standard deviation of the original σ̄r and cleaned σ̄c signals. B:
Scatter plot of SNR improvement across subjects and channels for normal (fc = 0.2Hz) and
slow signals (fc = 0.03Hz). HbO: red, HbR: blue. C: Typical average slow hemodynamic
signals of an exemplary subject in n = 1− 3 conditions, fc = 0.2Hz, for both original data
(HbO: salmon, HbR: sky blue) and cleaned data (HbO: red, HbR: blue) in channel AF6.

n-back ∆SNR /dB ∆SNR /dB ∆SNR /dB
fc = 0.5Hz fc = 0.2Hz fc = 0.033Hz

1 4.58± 1.99 4.10± 1.81 1.83± 1.13
HbO 2 4.10± 1.68 3.64± 1.52 1.78± 0.99

3 3.60± 1.78 3.17± 1.62 1.64± 1.14
1 3.50± 2.03 3.01± 1.76 1.80± 1.08

HbR 2 3.14± 1.68 2.69± 1.42 1.64± 0.92
3 2.88± 1.77 2.41± 1.47 1.40± 0.99

Table 2: Mean±std SNR improvement across all subjects and channels

Across conditions and subjects, for low-pass filtered signals with fc = 0.2Hz,
the within-subject standard deviation σ̄ of the original signal is reduced on
average by a factor 1.5 for HbO and a factor 1.3 for HbR through processing with620

BLISSA2RD. The SNR in each channel is improved on average by 3.64 dB for
HbO and by 2.70 dB for HbR. For signals slower than 30 s with fc = 0.033Hz, the
improvement is on average still 1.75 dB and 1.61 dB respectively. As before, in
channel and subject subsets, reduction of σ̄ / SNR improvement are significantly
higher up to factors around 3 / 10 dB. Figure 12 C shows typical slow average625

hemodynamic signals at position AF6 across whole 90 s epochs of n = 1 − 3
conditions in an exemplary subject. In line with physiological expectations, an
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increased task difficulty (n) leads to an average HbO increase / HbR decrease over
the whole time-course of each round. Within individuals, variability in average
responses of the signals across trials is distinctly higher in orginal compared to630

cleaned data.

3.0.3. Comparison of BLISSA2RD Performance: Recovery of Simu-
lated HRFs

Figure 13 shows results from the comparative block average HRF recovery
performance analysis. The average correlations between recovered baHRFs635

and ground truth for all participants and channels is (µ± σ HbO/HbR): PCA
(.84± .10/.93± .09), Spline (.83± .13/.89± .13), Wavelet (.93± .05/.94± .10),
BLISSA2RD (.96± .03/.94± .11). The average root mean square errors (RMSE)
between recovered baHRFs and ground truth are (µ ± σ HbO/HbR): PCA
(.35± .18/.06± .05), Spline (.41± .32/.07± .05), Wavelet (.17± .10/.04± .03),640

BLISSA2RD (.14± .06/.05± .03).
In HbO correlation and RMSE, BLISSA2RD outperformed all other methods
significantly (all p < 0.01 and below). In HbR correlation, except Spline, improve-
ment was was not significant. In HbR RMSE, BLISSA2RD outperformed PCA
and Spline significantly (all p < 0.01 and below) and no significant improvement645

over the Wavelet approach was observed. All tests are paired t-tests.

4. Discussion and Conclusion

We proposed an effective BSS framework and presented its implementation in
the BLISSA2RD method for fNIRS signal decomposition, analysis, and movement
artifact rejection. In the following, we discuss key findings and their implications.650

fNIRS Blind Source Separation and ICA. ERBM ICA unmixing of real-world
and simulated fNIRS data performed favorably over other tested ICA approaches
that do not include both sample dependency and higher-order statistics. All
methods performed better when applied to raw intensity signals compared to
chromophores, which is consistent with expectations in linear models, due to the655

logarithmic nature of the modified Beer-Lambert Law (mBLL). For a discussion
of linear mixing and non-linearities, see also [72]. When decomposing intensity
signals, it is essential to note implications for the interpretation of extracted
latent factors and their link to the chromophore domain. We motivate the
application of BSS with the separation into components that reflect independent660

physiological processes (e.g., Mayer Waves, pulse waves, motion artifacts, ...).
However, the unmixing itself does not yield sources that can be interpreted
physiologically without caution as such (see [48]). In contrast, they are of
information-theoretical origin and should be projected back to channel space,
i.e., through eq. 6 (see also Figure 4 E), for reliable physiological interpretation.665

Then, mBLL conversion to chromophores can be performed conventionally.
The qualitative results from visual inspection using real-world data were

quantitatively confirmed by simulation results (see Figure 15). Decomposition
performance was quantified with the correlation between estimated and true
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Figure 13: Comparison of method performance in the recovery of ground truth HRF from highly
contaminated real-world data. (A) Example of ground truth (black) and block average HRF
(baHRF) recovered conventionally using different artifact removal methods. (B) Correlation
and RMSE of recovered baHRFs vs. ground truth: BLISSA2RD vs other methods. Red: HbO,
blue: HbR. Bold cross: mean. (C) Boxplots of median/std evaluation metrics for all methods.
Stat. significance: * p < 0.05, ** p < 0.01, *** p < 0.001

target sources and Intersymbol Interference of the estimated unmixing matrix).670

Due to the use of both HOS and sample dependence, ERBM ICA outperforms
fastICA significantly in all metrics (p � 0.001) in the presence of source-
dependence. As in the real-world data, this generally yields smoother and more
distinguishable source components (e.g. Figure 7).

Time embedding against non-instantaneous coupling and Canonical Correlation675

Analysis. By integrating time- embedded multimodal CCA into the proposed
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BSS framework, non-instantaneous and non-constant coupling between shared
latent processes within fNIRS and accelerometer signals were successfully tackled.
On average, BLISSA2RD identified and extracted up to 4 pairs of latent processes
with a strong canonical correlation of up to 0.85, most substantially within time-680

embedding windows τ ≤ 1.8 s. These results appear to be also physiologically
valid, as it is plausible that at least three Euclidean degrees of freedom in
movement have a considerable impact on fNIRS signals. The approach also
shows the importance of considering (co-)modulation delays in fNIRS signals and
confirms its theoretically expected advantage over conventional cross-correlation685

analysis in the channel domain: This approach yielded only weak coefficients,
noteworthy only for the first principal accelerometer component with (ρ = 0.38)
on average (see supplementary material 5.4).

BLISSA2RD artifact rejection. The manifestation of indirect movement artifacts
varies strongly between subjects, movement conditions, and particular channels.690

BLISSA2RD consistently performed well across all factors: On average/ in
subsets, it attenuated hemodynamic physiological movement artifacts by one/
up to two orders of magnitude, reduced the average within-subject standard
deviation σ̄ of slow evoked hemodynamic signals by a factor of 1.3/ up to 3, and
increased its SNR by 3.64/2.70 dB (HbO/HbR)/ up to 10 dB. Also for signals695

far slower than the semi-periodic movements (fc < 0.033Hz) improvement could
be observed (1.75/1.61 dB). Behavioral changes in body posture (e.g., a tilt
of the head) and movement are likely the cause and indicate the importance
of approaches that consider indirect physiological movement artifacts beyond
typically targeted optode shifts.700

The performance of BLISSA2RD was furthermore validated in a conventional
stimulus-oriented HRF recovery approach using simulated HRFs as ground truth
on the real-world data. For better comparability, we employed a well-established
processing toolbox and signal processing pipeline and compared performance
with three widely applied methods: PCA, Spline and Wavelet-based artifact705

rejection. These have also been evaluated with the same toolbox and pipeline
in earlier works [32]. In both evaluation metrics, correlation and Root Mean
Square Error to ground truth, BLISSA2RD outperformed all other methods
significantly for HbO and performed comparatively or better than the other
methods for HbR signals.710

The results support the theoretical advantages of the proposed framework and
show its potential benefit in both novel (mobile) long term monitoring approaches
and fNIRS signal analysis, and as an additional preprocessing step in estab-
lished conventional GLM regression based analysis pipelines in fNIRS. Although
powerful statistical analysis tools come at the cost of higher computational com-715

plexity, the average runtime for cleaning a block of 10min data (9× 2 channels)
in 2230 runs was still only 14 s on an intel i7vPro notebook with Mathworks
Matlab2017b.

Limitations. BSS approaches require a minimum number of acquired channels to
allow for stable decomposition into latent factors. For this reason, the proposed720
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framework is not suitable in settings with very-low channel counts let alone single-
channels. Single-channel artifacts, i.e., individual optode decoupling or shifts, will
not reliably be rejected. These can, however, also be minimized by lightweight
instrumentation, headset, and optode fixation designs and were observed only
exceptionally in our M3BA-based [10] headset. The method’s strength relies on725

the exploitation of both statistical independence between fNIRS sources and their
co-modulation with movement signals - regardless of shared frequency bandwidth
and signal dynamics. This strength depends on the validity of the assumption
that evoked hemodynamic responses and physiological movement signals in the
fNIRS channels are independent, which is typically true. However, exceptions are730

conceivable, for example when a movement-evoked artifact co-modulates with
an evoked hemodynamic response in the corresponding sensory-motor region
that was responsible for the movement itself. The analysis was performed on
data recorded with a yet comparably low number of 9 optode pairs, which was
found to be sufficient for the approach. Due to the inherent multimodality of735

BLISSA2RD, rigidly coupled accelerometer signals are a requirement that is
currently not supported by the majority of commercial instruments, which may
be an actual limitation when not using M3BA or alike. Similar to trends in
wearable EEG, however, we expect wearable fNIRS to include accelerometers
by default soon. Furthermore, the extension of any instrument with simple740

stand-alone accelerometer modules is fairly easily possible.

Outlook and further applications. The presented BSS framework is not limited to
the analysis and rejection of artifacts and can easily be adapted to other purposes
by exchanging methods and target signals, as the processing stages are modular.
Possible expansions are A) performing ICA decomposition with TDSEP [73]745

to exploit time structure (pronounced autocorrelation) in the signals, when
targeting at oscillatory physiological components. B) Applying Independent
Vector Analysis (IVA) [43], the multivariate extension of ICA, which exploits
dependencies between components as well as data sets. C) Using the temporally
embedded CCA block as a superior approach to find optimal noise regressors750

for the conventional (canonical) GLM in fNIRS, e.g. by using short separation,
accelerometer or other physiological auxiliary signals as inputs.
We expect that the performance of BLISSA2RD can be further improved by
expanding the degrees of freedom of provided movement target signals, e.g.,
by a combined accelerometer and gyroscope sensor. While accelerometer data755

as target signals for removal of motion artifacts are a natural choice, others
can be used for identification and analysis of co-modulating sources in the
fNIRS time-domain. In the frequency domain, e.g., for EEG band-power fea-
tures, other methods such as those of the SPoC family [74, 72, 75] are predestined.

760

The framework presented in this manuscript is a new type of multivariate
methods for the BSS analysis of fNIRS signals and can be used as a blueprint for
artifact rejection in complex environments beyond the applied paradigm. In com-
bining strengths with existing complementary techniques such as multi-distance
optode approaches, we see a promising way to achieve the robustness desired for765
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new medical and research-oriented ambulatory neuroimaging applications.
BLISSA2RD is publicly available here: https://github.com/avolu/BLISSARD.
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5. Supplementary Material

5.1. Entropy Rate Bound Minimization (ERBM) ICA785

This section provides algorithmic details of ERBM ICA, which was presented in Section
2.3 For ERBM ICA, minimization of mutual information rate given in (3) provides the
umbrella under which non-Gaussianity, and sample-to-sample dependence are jointly
exploited.
ERBM ICA estimates the entropy rate by modeling each source sn as the output of an790

invertible linear filter driven by an independent and identically distributed process vn
with unknown distribution. Therefore, there exists a whitening filter that generates
each vn from ŝn. By scaling the whitening filter such that the entropy rate of each ŝn
is approximately equal to the entropy of vn, the cost function (3) becomes

JICA(W) =

Nx∑
n=1

H(vn)− log | det(W)| − C, (8)

where H(·) denotes the differential entropy. It is clear that minimizing (8) is not a795

straightforward task due to the difficulty of estimating the entropy of each vn. As the
model deviates from the true probability density function (PDF), a bias is introduced in
the estimate of the demixing matrix that can be quantified using the Kullback-Leibler
divergence between the true and the estimated PDF [43, 76]. This can be avoided by
integrating a flexible entropy estimation technique into the ICA framework in order800

to minimize the bias of the demixing matrix. Therefore, ERBM ICA uses the same
entropy estimation technique as ICA-EBM, which is based on the maximum entropy
principle. The estimate of each H(vn) is given by

Ĥ(vn) = log(σn) + min
1≤m≤M

Hm(v̄n), (9)

where σ2
n = E(v2n), v̄n = vn

σ
, and Hm(v̄n) = 0.5 log(2πe) − Vk{E(Gm(v̄n))} is the

smallest entropy that corresponds to the mth measuring function Gm(·). ERBM805

ICA uses four measuring functions and are based on bimodal, symmetric, or skewed
distributions [55] resulting in successful estimates of a wide range of distributions.

In addition to the flexible model on the density of the driving process, ERBM ICA
uses a flexible model on the whitening filter in order to effectively exploit sample-to-
sample dependence of the underlying sources. Since each si has been assumed to be810

the output of an invertible linear filter driven by vi, there exists a whitening filter

Qn(z) =

K∑
k=0

qnkz
−k of length K such that

vn(t) =

K∑
k=0

qnkŝn(t− k). (10)

The optimum filter coefficients can be estimated by solving the following optimization
problem

minH(vn), s.t.
1

2π

∫ π

π

log |A(ω)| dω = 0, (11)

where A(ω) ≡ A(z)|z=exp(
√
−1ω). The constraint in (11) ensures that Hr(ŝn) = H(vn)815

and each H(vn) has been estimated according to (9).
Thus, it is clear that ERBM ICA inherits all the advantages of ICA-EBM, namely its
flexibility, though with enhanced performance due to the exploitation of sample-to-
sample dependence.
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5.2. ERBM ICA whitening filter parameter820

For the application of the ERBM ICA algorithm to fNIRS data we evaluated the
selection of the whitening-filter length parameter pfl ∈ {1, ...30}. Of all u subjects
with complete datasets in the preliminary study, we used the first 10min of continuous
raw data from all 6 experimental blocks bi, performing a total number of 30 × 6× 6
(pfl×u× b) = 1080 ERBM ICA decompositions. For each subject and filter length pfl,825

consistency of ERBM ICA unmixing across blocks (time) was evaluated on all 15 pos-
sible combinations of two blocks bij {(i, j) ∈ {1, ..., 6} |i < j}, calculating intersymbol
interference (ISI) [69, 71] between each pair (W bi ,W

−1
bj

). Please see [77] for additional

information of this metric within the given context. Overall, this yielded 7 × 15 = 90
scores per filter value p and thus a total number of 2700 scores for evaluation of the830

optimal parameter selection across subjects and time. After a rapid drop for small
values p (normalized by the sample frequency fs), the ISI saturates to values around
0.1 for

pfl

fs
≥ 1 s (see Figure 14), which is thus the threshold of p-values used for our

decompositions.
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Figure 14: ERBM ICA p value evaluation. Median ISI per subject and whitening filter length
pfl (normalized by sample rate fs). Right: overall median ISI across subjects.

5.3. Simulations

Below we provide details on the simplified generation of data simulating fNIRS
source characteristics. 7 processes were generated as follows for t ∈ 0...100 s, sampled
at fs = 8Hz (see Figure 15):

1. Breathing (0.14Hz | ω1 = 2π
7 s

): S1(t) = sin(ω1t))840

2. Heart rate (1Hz | ω2 = 2π
s

), amplitude modulated by S1:
S2(t) = |(1− 0.3S1(t)| sin(ω2t)

3. Mayer waves (0.1Hz | ω3 = 2π
10 s

): S3(t) = sin(ω3t)

4. Evoked responses using ω4 = 2π
20 s

and e(t) =

{
sin(ω4t), sin(ω4t) ≥ 0

0, else
for

S4(t) = sgolayfilt (e(t)) with Savitzky-Golay filter order 1 and frame length 5 s845

5. White random gaussian noise in S5(t)

30



6. S6(t) Movement artifacts : initialize m(t) = 0 and draw a random numbers
randn(t) from N (0, 1) for all t. At each timepoint tidx where (randn(t) > 2
holds, add a gaussian curve (N (0, 5

fs
), cut at halfwidth 2.5 s) to m(t), centered

at tidx850

7. S7(t) Dependent evoked processes : initialize S(t) = 0, find time indices for
local maxima tmax of evoked responses S4, add a gaussian curve (N (0, 20

fs
), cut

at halfwidth 5 s) centered at tmax + td with a random (N 8
fs
, 1
fs

)) time delay
td = randn× 4 s.
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Figure 15: Typical
example of simulated
fNIRS data unmixed
with ERBM-ICA and
fastICA. S1 − S7
represent processes
due to breathing (1),
heart rate (2), Mayer
waves (3), evoked
responses (4), white
noise (5), movement
artifacts (6) and
dependent evoked
processes (7). Bold
numbers: correlation
between true and
estimated sources.

5.4. Correlation Metrics in the Intensity Domain and Selection of Time Embed-855

ding Parameter

We investigate the co-modulation between accelerometer target signals and fNIRS
signals both in the channel domain (unprocessed) and in the BLISSA2RD source space,
as well as the impact of time embedding parameter τ on the latter. For this, we use
the following correlation-based metrics:860

1. Cross-correlation analysis in the channel domain : We investigate the optimal time
lag and corresponding Pearson correlation coefficient ρ between fNIRS intensity
and accelerometer signals for all subjects, all blocks and all combinations of
original/cleaned fNIRS signals and first three accelerometer components, a total
of approx. 17× 12× 18× 3 = 11000.865

2. Canonical correlation in BLISSA2RD : conventional (cross) correlation analysis
cannot take the time-embedding, independent source decomposition, and CCA
projection into account. We investigate the canonical correlation coefficients that
result from the BLISSA2RD CCA step, which projects decomposed fNIRS sources

Ŝ
ERBM

x and principal accelerometer components Ŝ
PCA

z (τd) into canonical space.870

We investigate all time embedding window lengths τd ∈ {0, ..., 4.2 s}, subjects
and blocks, a total of 11 × 17× 12 = 2244 coefficients.

Figure 16 A shows scatter plots of the Pearson correlation coefficients ρo, ρc at
the individual optimal lag between each fNIRS channel and first three principal ac-
celerometer components (PAC) for original and cleaned data with τ ∈ {0− 0.96 s}. For875
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conventionally filtered fNIRS signals (fc = 0.2Hz), the average correlation of fNIRS
channels with the first PAC is 0.38 ± 0.22 vs. 0.09 ± 0.08 for original and cleaned
data respectively and differs significantly (p� 0.001). For the second and third PAC,
no significant statistical differences can be observed. Similarly, for slow fNIRS and
movement signals with periods lower than 30s, (fc = 0.03̄Hz) a less distinct but880

significant difference can be observed (0.32± 0.21 raw vs. 0.21± 0.16, p� 0.001) and
none for the second and third PAC.
The histogram resulting from pooling all optimal time shifts found by cross-correlation
analysis between single-channels of the original intensity data and principal accelerom-
eter components (Figure 16 B) reveals the majority of optimal lags between 0 − 1.2 s,885

peaking around 0.6 s with an average correlation of 0.41± 0.24 at the peak.
Figure 16 C shows average canonical correlation coefficients from the CCA step per-
formed within BLISSA2RD for different temporal embedding window sizes τD=0−10 =
0− 4.2 s (compare fig. 4, and 10 step III). Coefficients correspond to identified pairs of
shared components in original fNIRS and accelerometer signals. Across all participants890

and blocks, the average canonical correlation coefficients increase for greater τ , and
saturate toward longer time windows, where the most substantial increase can be
observed for embedding windows that cover 0− 1.8 s, coinciding with the findings from
the cross-correlation analysis. On average, the first three pairs of extracted shared
components show moderate- to strong canonical correlation of 0.85± 0.06, 0.71± 0.05895

and 0.60± 0.05 for τ ≥ 1.2 s.

= 0.41±0.24 ( ± )
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